If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+12y=60
We move all terms to the left:
y^2+12y-(60)=0
a = 1; b = 12; c = -60;
Δ = b2-4ac
Δ = 122-4·1·(-60)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{6}}{2*1}=\frac{-12-8\sqrt{6}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{6}}{2*1}=\frac{-12+8\sqrt{6}}{2} $
| 3/4(48-16x)=4(4+2x)= | | 5/6x-3/6x+12=24 | | 12-n2=-34 | | 9x2+-42x+49=0 | | 7=-11+(b+5) | | -2x=1-(-7) | | 1.5=y-(-5/6 | | x=2/9(9)-9/2 | | 23=8x2+3^2=23-8x2+9 | | 3(7-x)+1=0 | | 5x+3(6x+4)=150 | | -6-5(-7x-5)=8 | | 9x2+-42x-7=0 | | y+5/7=4/7 | | 2/9=72/x | | 11x-11x=-11 | | x+(73+27)=400 | | t^2-t+7=0 | | 7(4x-7)=28x-49 | | x^2+4x-108=0 | | 3(n-2+8=-83 | | -6x-11x=136 | | -10=-5+n | | 12a=-a | | 13+3(3x+8)=x-8 | | 9x^2+42x-7=0 | | -7b+8(1+8b)=236 | | n-4/3=-14/3 | | (x-2)/7=2+(3-x)/14 | | 5x+7-3x=2+×+4 | | 5x-(2+7x)=5(x-1)-2x | | 3x+2x-6=23 |